
Journal of Statistical Physics, Vol. 20, No. 4, 1979 

Boltzmann Equation on a Lattice: Existence and Uniqueness 
of Solutions 

Herbert  Spohn 1 
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Cercignani, Greenberg, and Zweifel proved the existence and uniqueness 
of solutions of the Boltzmann equation on a toroidal lattice under the 
assumption that the collision kernel is bounded. We give an alternative, 
considerably simpler, proof which is based on a fixed point argument. 
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1. I N T R O D U C T I O N  

The Bol tzmann equation, which we write in the form 

v, t) = - v .  V=f(x, v, t) + dr' dr" K(vlv', v ' ) f (x ,  v , t ) f (v ,  v ,  t) 

f dr" K(v'lv, v")f(x,  v", t ) f ( x ,  v, t) (1) 

with a suitable transit ion kernel dv K(vlv', v"), has two types of  singularities: 
For  a transit ion kernel coming f rom a finite-range potential, f dv K(v]v', v") 
is unbounded  as Iv' - v" I. The general feeling is that  this singularity can be 
controlled by suitable bounds on the moments  o f  the initial datum. For  the 
spatially homogeneous  case this is precisely what  has been proved. ~1-3> The 
other  singularity arises f rom the fact that  a collision occurs at a certain point  
in space [formally the transit ion kernel contains the delta functions 
~(x - x')  3(x - x")]. This singularity is rather severe and up to now there 
has been no satisfactory way to deal with it: Fo r  short  times (on the order o f  
one-fifth o f  a mean free time) existence and uniqueness has been proved for 
a large class of  initial data. ~-6) For  initial data in some sense close to equilib- 
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rium one has existence and uniqueness for all times and approach to 
equilibriumJ 7,8~ 

Cercignani et al. ~9~ have proposed to put the Boltzmann equation on a 
lattice and to remove thereby the spatial singularity. Formally, (1) is modified 
in such a way that x runs over a toroidal lattice and Vx is replaced by the 
difference operator. The authors then show existence and uniqueness of the 
solutions under the assumption that K is bounded. Physically, the latter 
condition means that at high velocities in a collision, particles pass through 
each other without being deflected. 

We want to consider here the same model, slightly generalized to arbi- 
trary spatial domains and specularly reflecting boundary conditions. In 
particular, no attempt is made to remove either the cross section or the lattice 
cutoff. 

Our, completely different, method of proof  is based on a simple obser- 
vation. 2 Let ~ be the initial datum and consider the equation 

v , t )  - v . V ~ f ( x , v , t )  + dv 'dv"K(v]v ' ,v") (~(x ,v") f (x ,v ' , t )  

- f dr" K(v'lv, v")(~(x, v")f(x,  v, t) (2a) 

This is a linear Boltzmann equation (transport equation), which describes 
the motion of " tes t  particles" with distribution f ( x ,  v, t)  through a fluid 
characterized by the single-particle distribution q~(x, v). The test particles 
move freely and collide once in a while with a fluid particle. One solves (2a) 
for 0 ~< t ~< tl with initial da tumf(x ,  v, 0) = q~(x, v) and denotes this solution 
by f l ( x ,  v, t). Since in the original Boltzmann equation any fluid particle 
could have been chosen as a test particle, the state of the fluid itself changes. 
This is taken into account by considering for the next time interval tl ~< t ~< t2 
the transport equation (2a) with a modified state of the fluid, i.e., 

dr' dr" K(v[v', /)")q~l(X, v")f(x,  t) 

- f dr" K(v'iv, v")eel(x, v")f(x, v, t) (2b) 

where r v) = f l ( x ,  v, tl). One solves (2b) for 0 ~< t ~< t2 - tz with initial 
datum f ( x ,  v, O ) =  r v) and denotes this solution by f2(x, v, t), etc. 
Intuitively, f~(t)  for 0 <~ t <~ tl ,  f2(t  - q )  for t~ <~ t <~ t2, fa(t  - t2) for 
t2 ~< t ~< ta .... will be an approximate solution of (1) with initial datum 
provided that tj+~ - G is small. 

2 I learned f rom M. Aizenman to think abou t  the Bol tzmann equat ions in this way. 
Later  we discovered that these ideas were already contained in a paper  by McKean c1~ 
under  the not ion  of  a nonl inear  Markov  process. 
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By reformulat ing the above a rgument  in a cont inuous way, the solution 
of  (1) is given as a fixed point  o f  a certain mapp ing  Z. Under  our  (physically 
ra ther  restrictive) assumpt ions  we prove  then that  Z has a unique fixed point.  

2. F O R M U L A T I O N  O F  T H E  P R O B L E M  

First, we construct  a discrete version of  - v .  Vx. Let  A c Z a be a 
simply connected domain.  We consider the following r a n d o m  mot ion  of  a 
particle with phase space A x R a. I f  the particle is at the point  x ~ A with 
velocity v e R  a, ]v[ # 0, v = (~l[vll ..... ~aIva]), ~j = + 1 ,  then it j umps  to 
x '  = (x~,.. . ,  x s + es ..... xa), v' = v, with probabi l i ty  1~1/(1~1[) + ... Iv~l). I f  
(xl  .... , xs + Es,..., x a ) C A ,  then the particle jumps  to x '  = x, v' = (v~ .... , 
- v j , . . . ,  va) with the same probabil i ty.  The j u m p  rate is Iv1[ + -.- + [val. I f  
v = 0, then the particle stays at x with probabi l i ty  one. This defines a M a r k o v  
j u m p  process x( t ) ,  v(t).  I f  Ex.v denotes the expected value condit ioned on the 
particle start ing at x, v, then, for  A = Z a, Ex,v(x( t))  = x + vt, i.e., on the 
average the particle moves  freely. 

Let  e At, t >>- O, be the forward M a r k o v i a n  semigroup of  x( t ) ,  v(t) ,  i.e., 

X ~ A  g XElk  d 

for  all g e L ~ ( A  x Ra), f e L I ( A  x Ra). Then e At is a s t rongly continuous,  
positivity- and norm-preserv ing  semigroup on L~(A x Rd). The domain  
D(A)  of  A is D(A)  = { f e L ~ ( A  x Ra)l [ v l f e L ~ ( A  x Ra)}. I t  is s traightfor-  
ward to check that  for  a box A c Z a with periodic boundary  condit ions (i.e., 
on a torus) the above construct ion leads to the same A as in Ref. 9. 

Let K(dv]v', v") be a transit ion kernel  with the following propert ies:  

(i)For each v' e R a, v" e R a, K(dvlv ' ,  v") is a measure  on R a. 
(ii) (v', v") -~  fa K(dv[v',  v") is measurable  for  every Borel set A c R a. 

(iii) ess-sup~. ~-~RdfR~ K(dv[v',  v") <<. c. 

(iv) J'R2~ dr' dr" K(dv[v',  v")f(v ')g(v") is absolutely cont inuous with respect 

to dv for all f ,  g eLZ(Ra) .  

For  notat ional  simplicity the dr-absolutely cont inuous measure  

R2a dr' dr" K(dv]v',  v")f(v ')g(v") 

is then identified with its density. 
In passing, we note that  for  the Bol tzmann equat ion corresponding to 

an interaction potential  the kernel K is of  the fo rm 

K(dvlv' ,  v") = ( dv 3((v' - v) .(v" - v))F(]v' - v], Iv' - v"]) (4) 
azx an 
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where the measurable function F 1> 0 can be computed from the differential 
cross section of  the potential,  e.g., F = 1 for hard spheres. Properties (i), 
(ii), and (iv) are valid and (iii) will hold for a large class of  F's.  However,  for  
those F ' s  coming from a potential,  (iii) cannot  be satisfied. 

The Bol tzmann equation on a lattice with cross-section cutoff is then 

~-~f(x, v, t) = (Af)(x,  v, t) + dr' dv" K(dvlv', v")f(x, v", t ) f (x ,  v', t) 
2d 

-- ( dr" K(dv'[v, v")f(x, v", t ) f (x ,  v, t) 
JR 2d 

- (Af)(x,  v, t) + Q( f ( t ) , f ( t ) ) (x ,  v) (5) 

We will also consider the integral version of  (5) 

f ( t )  = eAtc~ + ds eA(t-~)Q(f(s),f(s)) (6) 

where q~ = f (0)  is the initial datum. 

3. EXISTENCE A N D  UNIQUENESS OF SOLUTIONS 

T h e o r e m  1. Let  K satisfy (i)-(iv). Then  for any initial datum q~ 
LI(A • Ra), r >1 O, (6) has a unique solution f ( t ) ,  t >1 O, with f (0)  = 4. 
Fur thermore ,  f ( t )  >>. 0 and [[f(t)ll = Ll~ll. 

Proof. Let us denote  by L+~(A • R a) the positive functions and by 
L~+,~(A • R a) the positive functions normalized to one in LI(A • Ra). The 
norm of  LI(A • R a) is denoted by ]]. ]]. Let  4 E L+ Z(A • Ra). We define the 
operator  B*: LZ(A • R a) -~ LZ(A x R a) by 

(B*f)(x, v) = ( dr' dr" K(dvlv', v")~b(x, v")f(x, v') 
2d  

- ( dr" K(dv'[v, v")~b(x, v")f(x, v) (7) 
dR 2d 

Again, by (iv), the first term is of  the form g(x, v) dv and is identified with 
g(x, v). 

k e m m a  2. We have 

IlB*ll ~ 2c[l~lt, ]lBO~ - BO~l[ ~< 2c114~ 1 - 4~ll (8) 
I f  t ~ ~b(t) ~ L~+,I(A x R a) is continuous,  then t ~ B ~"~ is norm continuous 
and l[B~176 <~ 2c for  all t. 
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Proof. We have 

I]B~,lf - B*2fl I 

<~ ~ s &' dd' K(&lv', v")lq,,(x, v") - ~=(x, v") I If(x, v')] 
X 6 A  3d 

+ ~ s dvdv"K(ddlv, v")14,,(x,v') - @2(x,v")] ]f(x,v)[  
X ~ A  8d 

x e s s - s u p f  K(dv[v', v") 
on d 

Let ~ e L~+,I(A x R e) be the initial datum and let [0, T] ~ t ~-> ~b(t)e 
La+,I(A x R a) be continuous,  ~b(0) = 4- We consider the equation 

d 
-~f(t)  = af(t) + B~<tf(t) (9) 

Equat ion (9) has the structure of  a t ransport  equat ion with t ime-dependent  
collision term B *m. Since t ~-> B ~m is uniformly bounded and norm-con-  
tinuous, by standard t ime-dependent  per turbat ion theory,  <z~ the mild 
solution of  (9) is the two-parameter  family of  contractions U~~ t), 
0 ~< s ~< t ~< T, which preserve positivity and norm and satisfy 

Ue<'~(q, t2)U~e)(t2, ta) = U*<'~(tl, ta) ,  U~e~(t, t) = 1 

Fur thermore  UO<~ t) is jointly strongly continuous in s and t. 
�9 Let  X = {~b(-)][0, T] ~ t >> ~b(t) ELt+a(A • Ra), 4J(.) is continuous,  

~b(0) = q~} and define the metric m on X by 

m(~bl(-), ~b2(.)) = sup li~bl(t) - ~b2(t)l I 
te[O,T] 

(X, m) is a complete metric space. We define a mapping Z:  X--> X by 

Z:  ~b(t) -+ UO~~ t)~b, 0 ~ t ~< T (10) 

Clearly, a solution of  (6) is a fixed point  of  Z. Therefore  we only have to 
show that Z is a strict contract ion for T small enough�9 Then by the contrac- 
t ion mapping principle Z has a unique fixed point. Since q~ e L ) a ( A  • R a) 
was arbitrary and since U~'~(0, t) preserves positivity and norm, by iteration 
we obtain a solution for  all t > 0. 
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Lemma 3. We have 

m(Zr  Zr ~< (e  2cT - 1)m(r r ( l l )  

P r o o f .  

II U~"<"( O, t),/, - U*2("(0, t)r 

= [ f 2 d s e A ' t - " [ B ~ , ( " U ~ , ( " ( O , s ) - B ~ 2 ( ' ~ U * , ( " ( O , s ) ] d ?  

P t 

<" ~o as IIg~,<s'U~l<"(0, s)  - g*2(~'V~l">(0, s)ll 

+ IIg~2's'[U~,'"(0, s)  - V*~('(0, s)r 

<<. 2ct sup l[r - r 
sE[0,t] 

L + 2c ds II vo ,~ , (0 ,  s )r  - uo2,-,(0, ~)r 

where we used Ile~'ll = 1, IIU~'~(0, s)ll = 1, and L e m m a  2. By Gronwal l ' s  
l e m m a  we obtain  (11). [ ]  

To  obtain  a solution of  (5) one has to show the differentiability o f f ( t ) .  
We use the following specialization of  a more  general result due to Voigt. (12~ 

Theorem 4 ( V o i g t ) .  Let  X be a Banach space and V(t) ,  t >1 O, be a 
ho lomorph ic  semigroup of  opera tors  on X with generator  A. Let F: X---> X 
be a cont inuous and locally Lipschitz, i.e., for  x ~ X there exists a neighbor-  
hood  (9 c X of  x and  a constant  L such that  

liE(y) - F(z)l ] ~< LI ly  - zll 

for  all y, z ~ (9. Let  fro z X. Let  [0, oo) ~ t ~ if(t) e X be cont inuous and 
satisfy the integral equat ion 

~( t )  = v( t )~o  + v ( t  - s )E( t , ( s ) )  ds 

Then  if(t) ~ D(A)  for  all t > 0 and  if(t) satisfies 

d 
d~ if(t) = Af t ( t )  + F(ff(t)),  0 < t < ~ ,  if(O) = iXo 

In  our  case, f ~+ Q ( f , f )  is clearly locally Lipschitz. One only has to show 
tha t  e At is a ho lomorph ic  semigroup.  

L e m m a  5. I f  [A I < ~ ,  then e At, t >>- O, is a bounded  ho lomorphic  
semigroup.  
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Proof. Let d =  I. Then A = [ M , N ] .  Now,  [ M , N ]  x { Iv ] , - [v [}  is 
invariant. We have explicitly 

(a f ) (x ,  v ) =  ] v i [ f ( x -  1, 

(Af) (x ,  v) = Iv[ [f(x,  - v) 

(Af) (x ,  v ) =  Ivl[f(x + 1, 
(Af)(x ,  v) = Iv[ [f(x,  - v) 

By Fourier- t ransforming one 
z{[ larg z - zr I ~< 0}, with 

v ) - f ( x , v ) ] ,  M +  1 , < x ~ < N ' ~  v > 0  

- f ( x ,  v)],  x = m J 

v ) - f ( x , v ) ] ,  M , < x ~ < N -  1 \  v < 0  

- f ( x ,  v)],  x = N ) 

checks that  the spectrum of  A lies in the sector 

t a n 0 =  s i n N _ ~ / +  1 1 - C O S N _ ~ / / +  1 

i.e., for N - M large, 0 ~_ �89 - 7r/(N - M + 1). Since 0 is independent of  
v, then A on LI([M, N] x R) generates a holomorphic  semigroup. For  d > 1 
one only has to consider the invariant subset 

A • {(qlv~l,..., ealvdl)l~j = + 1 , j  --- 1,..., d}. [ ]  

Therefore we obtain the following result: 

T h e o r e m  6. Let ]A l < oo and K satisfy (i)-(iv). Then for any initial 
da tum q~ ~ LI(A x Ra), (~ >1 O, there exists a unique so lu t ionf ( t )  with f (0)  = 4~ 
of  (5) for t > 0. Fur thermore ,  f ( t )  >>. 0 and Ilf(t)[I = ][~bll. 

We have no comparable  result for IA[ = oo. 
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